Mechanisms of insulin action on sympathetic nerve activity.

نویسندگان

  • M S Muntzel
  • E A Anderson
  • A K Johnson
  • A L Mark
چکیده

Insulin resistance and hyperinsulinemia may contribute to the development of arterial hypertension. Although insulin may elevate arterial pressure, in part, through activation of the sympathetic nervous system, the sites and mechanisms of insulin-induced sympathetic excitation remain uncertain. While sympathoexcitation during insulin may be mediated by the baroreflex, or by modulation of norepinephrine release from sympathetic nerve endings, it has been shown repeatedly that insulin increases sympathetic outflow by actions on the central nervous system. Previous studies employing norepinephrine turnover have suggested that insulin causes sympathoexcitation by acting in the hypothalamus. Recent experiments from our laboratory involving direct measurements of regional sympathetic nerve activity have provided further evidence that insulin acts in the central nervous system. For example, administration of insulin into the third cerebralventricle increased lumbar but not renal or adrenal sympathetic nerve activity in normotensive rats. Interestingly, this pattern of regional sympathetic nerve responses to central neural administration of insulin is similar to that seen with systemic administration of insulin. Further, lesions of the anteroventral third ventricle hypothalamic (AV3V) region abolished increases in sympathetic activity to systemic administration of insulin with euglycemic clamp, suggesting that AV3V-related structures are critical for insulin-induced elevations in sympathetic outflow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of hypothalamic mTORC1 signaling in insulin regulation of food intake, body weight, and sympathetic nerve activity in male mice.

Insulin action in the brain particularly the hypothalamus is critically involved in the regulation of several physiological processes, including energy homeostasis and sympathetic nerve activity, but the underlying mechanisms are poorly understood. The mechanistic target of rapamycin complex 1 (mTORC1) is implicated in the control of diverse cellular functions, including sensing nutrients and e...

متن کامل

Anteroventral third ventricle lesions abolish lumbar sympathetic responses to insulin.

Insulin has been shown to increase sympathetic nerve activity. Because evidence shows that insulin acts within the central nervous system, we hypothesized that lesions of the anteroventral third ventricle region, an area rich in insulin receptors, would abolish sympathetic responses to hyperinsulinemia. We measured mean arterial pressure and lumbar sympathetic nerve activity in fasted, anesthet...

متن کامل

Insulin in the brain increases gain of baroreflex control of heart rate and lumbar sympathetic nerve activity.

Chronic central administration of insulin increases the gain of baroreflex control of heart rate, but whether baroreflex control of the sympathetic nervous system is similarly affected is unknown. The sites and mechanisms by which brain insulin influences the baroreflex are also unclear. Therefore, the present study tested the hypothesis that acute infusion of insulin into the brain ventricles ...

متن کامل

Hypothalamic PI3K and MAPK differentially mediate regional sympathetic activation to insulin.

The action of insulin in the central nervous system produces sympathetic nervous system activation (also called sympathoactivation), although the neuronal intracellular mechanisms that mediate this are unclear. We hypothesized that PI3K and MAPK, the major pathways involved in insulin receptor signaling, mediate sympathetic nerve responses to insulin. Intracerebroventricular administration of i...

متن کامل

Suppression of insulin-induced sympathetic activation and vasodilation by dexamethasone in humans.

BACKGROUND Physiological hyperinsulinemia in lean human subjects stimulates sympathetic nerve activity and blood flow in skeletal muscle, but the underlying mechanism is unknown. Potential mechanisms include central neural or peripheral actions of insulin. Glucocorticoids may potentially interfere with both such actions and thereby may attenuate sympathoexcitatory and vasodilatory effects of in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical and experimental hypertension

دوره 17 1-2  شماره 

صفحات  -

تاریخ انتشار 1995